THRUST Evolutionary and Tree - Based Rule Ensembles

نویسنده

  • Jorge Muruzábal
چکیده

Ensemble rule based classification methods have been popular for a while in the machine-learning literature (Hand, 1997). Given the advent of low-cost, high-computing power, we are curious to see how far can we go by repeating some basic learning process, obtaining a variety of possible inferences, and finally basing the global classification decision on some sort of ensemble summary. Some general benefits to this idea have been observed indeed, and we are gaining wider and deeper insights on exactly why this is the case in many fronts of interest. There are many ways to approach the ensemblebuilding task. Instead of locating ensemble members independently, as in Bagging (Breiman, 1996), or with little feedback from the joint behavior of the forming ensemble, as in Boosting (see, e.g., Schapire & Singer, 1998), members can be created at random and then made subject to an evolutionary process guided by some fitness measure. Evolutionary algorithms mimic the process of natural evolution and thus involve populations of individuals (rather than a single solution iteratively improved by hill climbing or otherwise). Hence, they are naturally linked to ensemble-learning methods. Based on the long-term processing of the data and the application of suitable evolutionary operators, fitness landscapes can be designed in intuitive ways to prime the ensemble’s desired properties. Most notably, beyond the intrinsic fitness measures typically used in pure optimization processes, fitness can also be endogenous, that is, it can prime the context of each individual as well.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Rule-Base Influence Function Mechanism for Cultural Algorithm

This study proposes a modified version of cultural algorithms (CAs) which benefits from rule-based system for influence function. This rule-based system selects and applies the suitable knowledge source according to the distribution of the solutions. This is important to use appropriate influence function to apply to a specific individual, regarding to its role in the search process. This rule ...

متن کامل

Voltage Sag Compensation with DVR in Power Distribution System Based on Improved Cuckoo Search Tree-Fuzzy Rule Based Classifier Algorithm

A new technique presents to improve the performance of dynamic voltage restorer (DVR) for voltage sag mitigation. This control scheme is based on cuckoo search algorithm with tree fuzzy rule based classifier (CSA-TFRC). CSA is used for optimizing the output of TFRC so the classification output of the network is enhanced. While, the combination of cuckoo search algorithm, fuzzy and decision tree...

متن کامل

Quantitative Comparison of Tree Pairs Resulted from Gene and Protein Phylogenetic Trees for Sulfite Reductase Flavoprotein Alpha-Component and 5S rRNA and Taxonomic Trees in Selected Bacterial Species

Introduction: FAD is the cofactor of FAD-FR protein family. Sulfite reductase flavoprotein alpha-component is one of the main enzymes of this family. Based on applications of this enzyme in biotechnology and industry, it was chosen as the subject of evolutionary studies in 19 specific species. Method: Gene and protein sequences of sulfite reductase flavoprotein alpha-component, 5S rRNA sequence...

متن کامل

Quantitative Comparison of Tree Pairs Resulted from Gene and Protein Phylogenetic Trees for Sulfite Reductase Flavoprotein Alpha-Component and 5S rRNA and Taxonomic Trees in Selected Bacterial Species

Introduction: FAD is the cofactor of FAD-FR protein family. Sulfite reductase flavoprotein alpha-component is one of the main enzymes of this family. Based on applications of this enzyme in biotechnology and industry, it was chosen as the subject of evolutionary studies in 19 specific species. Method: Gene and protein sequences of sulfite reductase flavoprotein alpha-component, 5S rRNA sequence...

متن کامل

MMDT: Multi-Objective Memetic Rule Learning from Decision Tree

In this article, a Multi-Objective Memetic Algorithm (MA) for rule learning is proposed. Prediction accuracy and interpretation are two measures that conflict with each other. In this approach, we consider accuracy and interpretation of rules sets. Additionally, individual classifiers face other problems such as huge sizes, high dimensionality and imbalance classes’ distribution data sets. This...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016